GRAPHICAL ABSTRACTS

Tetrahedron Lett. 30, 3243 (1989) SYNTHESIS AND PHEROMONAL PROPERTIES OF (Z)-7,7-DIFLUORO-8-DODECENYL ACETATE, A DIFLUORO DERIVATIVE OF THE SEX PHEROMONE OF THE ORIENTAL FRUIT MOTH Marek Masnyk and Josef Fried* Department of Chemistry, University of Chicago, Chicago, IL 60637 Wendell Roelofs NY State Experimental Station, Geneva, NY 14456 A synthesis of the difluoro analog 1 of the pheromone of the oriental fruit moth and its trans-isomer 2 is presented. The cis-isomer 1 possesses activity identical to that of the natural pheromone. 1 Tetrahedron Lett.30,3247(1989) CIS-TRANS ISOMERIZATION OF AN α , α -DIFLUOROOLEFIN CATALYZED BY BROMINE Marek Masnyk and Josef Fried* Department of Chemistry, The University of Chicago Chicago, IL 60637 OAc OAc 1 Bromination of <u>1</u> with 1M Br₂ in CCl₄ yields three and erythre dibromides in a 19:1 ratio. <u>2</u> gives only the erythre isomer. At 0.04-0.11 M Br₂ <u>1</u> is isomerized to <u>2</u> in high yield. A free bromocarbocation β to the CF₂ group is invoked to explain these results. SYNTHESIS OF N⁶-ADENOSINE ADDUCTS EXPECTED FROM CYCLO-Tetrahedron Lett. 30, 3251 (1989) PENTA-RING ACTIVATION OF ACENAPHTHYLENE AND ACEANTHRY-LENE A.W. Bartczak,^a R. Sangaiah,^a D.J. Kelman,^a G.E. Toney,^b L.J. Deterding,^b J. Charles,^a D. Marbury,^a and A. Gold^{a*} ^aDepartment of Environmental Sciences and Engineering, University of N. Carolina-Chapel Hill, Chapel Hill, NC 27514 ^bNIEHS, Research Triangle Park, NC 27709 trans cyclopenta amine alcohol + 6-chloropurine riboside Tetrahedron Lett.30,3255(1989) DIELS-ALDER AND ENE REACTIONS OF NITROSYL HYDRIDE AND NITROSOFORMALDEHYDE Harry E. Ensley*and Shivkumar Mahadevan Department of Chemistry, Tulane University, New Orleans, LA. 70118 R = H , HCO

	Tetrahedron Lett. <u>30</u> ,3333(1989)
THE REACTIONS OF LITHIOBISPHENYLSELENOMETHANE WITH CHLOROMETHYLTRIMETHYL- SILANE AND IODOMETHYLTRIMETHYLSTANNANE : NOVEL 1,1 - AND 1,2- ELIMINATION REACTIONS IN ORGANOSELENIUM/ ORGANOTIN CHEMISTRY	
Tarun K. Sarkar * and Tushar K. Satapathi, Department of Chemistry , Indian Institute of Technology, Kharagpur 721302, India.	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
PhSeCH=CH2 PhSeCH	2SiMe 3
A FACILE ROUTE TO VINYL ISONITRILES	Tetrahedron Lett. <u>30</u> ,3335(1989)
Jack E. Baldwin $\overset{\star}{}$ and Yasuchika Yamaguchi The Dyson Perrins Laboratory, University of Oxford, South	Parks Road, Oxford, OX1 3QY, U.K.
A new method for the synthesis of vinyl isonitriles from olefins is described, which is based on the iodo isocyanation reaction of olefins followed by the conversion to β -iodo isocyanides and subsequent β -elimination reaction.	i, ii, iii
i) AgOCN, 1₂ ii), Cl₃SiH, diisopropyl- ethylamine iii) t-BuOK, THF.	
A NOVEL DIOXETANE-HYDROPEROXIDE REARRANGEMENT: PaoTo- OXYGENATION OF 3-TERT-BUTOXY (AND METHOXY)-6,7-BENZO- BICYCLO [3.2.1] OCTA-2,6-DIENES Metin Balci, Yavuz Taşkosenligil and Mansur Harmandar Atatürk University Department of Chemistry Faculty of Sciences Frzurum/Turkey	
The dioxetanes 1 and 2 have been synthesized by photo- oxygenation of the corresponding enol ethers. Upon heating 1 rearranged to the unexpected hydroperoxide where 2 decomposed to the expected aldehyde-ester. The striking behaviour of these dioxetanes have been discussed in terms of steric factors. 2	
	Tetrahedron Lett. 30, 3343(1989)
REVERSIBLE CLEAVAGE OF 5-CHOLEST-3-ENOXYL RADICALS: ADDITION OF ALKYL RADICALS TO KETONES W. Russell Bowman*, Brian A. Marples*, and Naveed A. Zaidi Department of Chemistry, University of Technology, Loughborough, Leics.	
5-Cholest-3-enoxyl radicals underwent reversible cleavage of the C5-C10 bond.	
$R_{0} = C_{0} = C_{0}$	

